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Abstract

Equational logic can be seen as predicate logic where the only predicate symbol
is equality.
The first aim of this bachelor project is the formulation of a calculus for equa-
tional logic. The second aim is to design an input-format for proofs and the
third aim is to develop a program which transforms the given sequences of
equalities with respect to the input-format to LATEX proofs in this calculus.
The used programming language for transforming is java.
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1 Introduction

A logic has a certain language in which formulas of the logic can be formulated.
The language is usually given by an inductive definition, involving one or more
kinds of variables, connectives, quantifiers, etc. There are different kinds of log-
ics e.g., classical propositional logic, intuitionistic propositional logic, classical
first order logic, intuitionistic first order logic, first order logic with equality,
other logics like minimal logic, linear logic, modal logics, horn logic, rewrite
logic etc., and finally equational logic.

Equational logic is a sub logic of classical first order logic, expresses equalities
between terms that may refer to individual variables. Equational logic expresses
simple equational reasoning, terms are still composed of function symbols and
variables, formulas are always equations of the form s ≈ t when s and t are
terms.
The main aims of this report are to

1. develop an easy text format where equational logic proofs are easy to
typeset

2. develop transformations to LATEX code such that equational logic proofs
are nicely displayed.

Typesetting such proofs directly in LATEX is time consuming and error-prone.
Therefore there was a need for this project. The basic but main questions about
this bachelor project can be seen as follows:

1. Why to do this project?

• Because it is more cumbersome to write the proofs in LATEX than
writing in any plain-text file.

2. What are the advantages of this project?

• The simplicity of writing of the proof in a simple text format.

• Display the same proof in various formats e.g., linear-format, tree-
format.

3. Where to use this project?

• At universities in lectures

1



1 Introduction

In this project we have tree keywords such as given, transformed, displayed.

• A proof is given.

• The given proof is transformed.

• The transformed proof is displayed.

Given is for example the proof in Figure 1.1 below in a file. The program, which
has been developed in this thesis, transforms the given proof in LATEX code in
Figure 1.2 and Figure 1.3 .

Example 1.1. : Given is the proof below.

1;a = b;prem
2; b = c;prem
3;a = c; trans1,2

Figure 1.1: proof

Displayed in linear − view
1 a ≈ b prem
2 b ≈ c prem
3 a ≈ c trans 1, 2

Figure 1.2: proof linear.pdf

Displayed in tree − view

a ≈ b (app)
b ≈ c (app)

a ≈ c (trans)

Figure 1.3: proof tree.pdf

Above we have the different representations of the same proof. The left one
is in linear-shape while the right one is in tree-shape. The written program
helps to typeset in LATEX. This project allows easy typesetting in simple text
format. We write the proof into a file according to the input-format. And the
proof in this file is transformed automatically into different LATEX sources for
nice display.

I would like to give an overview of structure of thesis. In the next chapter,
i.e., Chapter 2 we recall equational logic. In the Chapter 3 we present the
input-format used for typesetting equational logic proofs as plain-text files. In
the Chapter 4 and Chapter 5 we denote to transformations into LATEX source
code. In Chapter 6 we present a user manual before Chapter 7 concludes.

2



2 Equational Logic

2.1 Definition of Logic and Equational Logic

This page was taken mostly from the lecture script by Xiemaisi, University of
Sinica in Taiwan [9].

Definition 2.1. What is a Logic?

• A logic has a certain language in which formulas of the logic can be
formulated.

• The language is usually given by an inductive definition, involving one or
more kinds of variables, connectives, quantifiers, etc.

• Formulas of the language have some sort of intended meaning.

Examples of Logics

• Classical propositional logic (CPL): formulas express true or false propo-
sitions.

• Intuitionistic propositional logic (IPL): same language as CPL, formulas
express abstract problems or statements to be proved.

• Classical first order logic (CFOL): same intended meaning as CPL, more
expressive formula language with quantification over individuals.

• Intuitionistic first order logic (IFOL): relates to IPL like CFOL to CPL

• Equational logic (EL): a sub logic of classical first order logic, expresses
equalities between terms that may refer to individual variables.

• First order logic with equality (FOLE): a variety of CFOL/IFOL that
gives special status to the equality symbol.

• Other logics: minimal logic, linear logic and its varieties, modal logics,
temporal logic, Horn logic, rewrite logic, . . .

Definition 2.2. What is Equational Logic?

Equational logic consists of terms and the symbol equality which should be
proved whether the both sides are equal or not equal.

• Equational Logic expresses simple equational reasoning.

• Terms are still composed of function symbols and variables.

3



2 Equational Logic

• Formulas are always equations of the form s ≈ t (no connectives, no quan-
tifiers).

• We can view equational logic either from a semantic or a proof theoretic
point of view.

2.2 Terms

This section and the sections Section 2.3 and Section 2.5 were taken from the
lecture script of Term Rewriting by Prof. Aart Middeldorp from the University
of Innsbruck [5].

In this section we discuss the syntax of the terms.

Definition 2.3. A signature is a set F of function symbols. Associated with
every f ∈ F is a natural number denoting its arity, i.e., the number of arguments
it is supposed to have. A function symbol of arity n is called n-ary. We
use unary for 1-ary, binary for 2-ary, and ternary for 3-ary function symbols.
Function symbols of arity 0 are called constants.

Definition 2.4. Let F be a signature and V a countably infinite set of variables
disjoint from F . The set T (F ,V) of terms built from F and V is the smallest
set such that every variable is a term, every constant is a term, and if f ∈ F is
a function symbol of arity n > 0 and t1, . . . , tn are terms then f(t1, . . . , tn) is a
term.

Function symbols of arity greater than 0 are typically denoted by f, g, h,
constants by a, b, c variables by x, y, z and terms by s, t, u (and their
derivatives, like s′ and t1).

2.3 Algebras

In the previous section we introduced the syntax of the terms. In this section
we are concerned with their semantics.

Definition 2.5. Let F be a signature. An F − algebra A is a set A equipped
with operations fA ∶ An → A for every n−ary function symbol f ∈ F . The un-
derlying set A is called the carrier of A.

Consider a signature F consisting of a constant 0, a unary function symbol s,
and a binary function symbol +. The set N of natural numbers can be turned
into an F-algebra A by defining 0A = 0, sA is the successor function, and
+A is addition. The carrier of the F-algebra B is the set {⊕,⊖,⊗,⊘}.
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2.4 Rules for Equational Logic

Constant 0 is interpreted ⊕ and the interpretation sB and +B of the func-
tion symbols s and + are given in the following tables (the first argument
of tB is written in the left column and the second argument in the top row):

sB
⊕ ⊖
⊖ ⊗
⊗ ⊘
⊘ ⊕

Table 2.1: Interpretation of sB

+B ⊕ ⊖ ⊗ ⊘
⊕ ⊕ ⊖ ⊗ ⊘
⊖ ⊖ ⊖ ⊕ ⊕
⊗ ⊗ ⊘ ⊗ ⊖
⊘ ⊘ ⊕ ⊗ ⊘

Table 2.2: Interpretation of +B
These two F-algebras will be used to illustrate subsequent developments. In
the following we make the notational convention that A (B, C, . . . ) denotes
the carrier of the F-algebra A (B, C, . . . ). Furthermore, if the signature F can
be inferred from the context or is irrelevant, we often write algebra instead
of F-algebra.

LetA be an arbitrary algebra. Every ground term t can be interpreted inA by
simply replacing every function symbol f in t by its interpretation fA and
evaluating the resulting expression. For instance, in the algebra A defined
above the ground term s(0 + s(0)) is interpreted as sA(0A +A sA(0A)) = 2.
Its interpretation in the algebra B is sB(0B +B sB(0B)) = ⊗. This is formalized
below.

Definition 2.6. Let A be an arbitrary algebra. We inductively define a
mapping [.]A from the set of ground terms to A as follows:
[f(t1, . . . , tn)]A = fA([t1]A, . . . , [tn]A). In particular, if t is a constant then
[t]A = tA.

So [s(0 + s(0))]A = 2 and [s(0 + s(0)]B = ⊗ in the example algebras. The
interpretation of non-ground terms depends on the values that we assign to
the variables. Consider for instance the terms s(x + s(y)) and the example
algebra A. If we assign 2 to x and 3 to y the we get sA(2 +A sA(3)), which
evaluates to 7. Assigning the value 49 to both x and y results in sA(49 +A
sA(49)) = 100.

2.4 Rules for Equational Logic

2.4.1 Reflexivity

The reflexivity rule

t ≈ t (ref)

For all terms t reflexivity allows us to prove two identical terms equivalent.
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2 Equational Logic

Example 2.7. : t is equal t .

t ≈ t (ref)

Figure 2.1: Tree-view

1 t ≈ t ref

Figure 2.2: Linear-view

2.4.2 Symmetry

The symmetry rule
s ≈ t
t ≈ s (sym)

Symmetry allows us to conclude the equation in reverse order, we conclude the
equation below the inference-line by the equation above the inference-line.

Example 2.8. : Given is a ≈ b and prove b ≈ a.

a ≈ b (app)
b ≈ a (sym)

Figure 2.3: Tree-view

1 a ≈ b prem
2 b ≈ a sym 1

Figure 2.4: Linear-view

2.4.3 Transitivity

The transitivity rule
s ≈ t, t ≈ u

s ≈ u (trans)

Transitivity allows us to prove s ≈ u if s is equivalent to t and t is equivalent
to u.

Example 2.9. : Given are a ≈ b and b ≈ c, prove a ≈ c.

a ≈ b (app)
b ≈ c (app)

a ≈ c (trans)

Figure 2.5: Tree-view

1 a ≈ b prem
2 b ≈ c prem
3 a ≈ c trans 1, 2

Figure 2.6: Linear-view

2.4.4 Application

The application rule

lσ ≈ rσ (app)

For all l ≈ r ∈ E and substitutions σ we can prove any instance of an equation.

Example 2.10. : Given is f(x) + 0 ≈ f(x), so prove f(1) + 0 ≈ f(1) .

f(1) + 0 ≈ f(1) (app)

Figure 2.7: Tree-view

1 f(x) + 0 ≈ f(x) prem
2 f(1) + 0 ≈ f(1) app 1

Figure 2.8: Linear-view
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2.4 Rules for Equational Logic

2.4.5 Congruence

The congruence rule

s1 ≈ t1, . . . , sn ≈ tn
f(s1, . . . , sn) ≈ f(t1, . . . , tn)

(cong)

For all n−ary function symbols f , we can extend terms with any function sym-
bols.

Example 2.11. : Given is a ≈ b, prove f(a) ≈ f(b) .

a ≈ b (app)
f(a) ≈ f(b) (cong)

Figure 2.9: Tree-view

1 a ≈ b prem
2 f(a) ≈ f(b) cong 1

Figure 2.10: Linear-view

Example 2.12. : Given are a ≈ b and b ≈ c prove f(a, b) ≈ f(b, c) .

a ≈ b (app)
b ≈ c (app)

f(a, b) ≈ f(b, c) (cong)

Figure 2.11: Tree-view

1 a ≈ b prem
2 b ≈ c prem
3 f(a, b) ≈ f(b, c) cong 1, 2

Figure 2.12: Linear-view

Example 2.13. : Given are a ≈ b, b ≈ c and c ≈ d, prove f(a, b, c) ≈ f(b, c, d) .

a ≈ b (app)
b ≈ c (app)

c ≈ d (app)
f(a, b, c) ≈ f(b, c, d) (cong)

Figure 2.13: Tree-view

1 a ≈ b prem
2 b ≈ c prem
3 c ≈ d prem
4 f(a, b, c) ≈ f(b, c, d) cong 1, 2, 3

Figure 2.14: Linear-view

2.4.6 Summary of Rules

The rules below state that if the formula above the line is a theorem formally
deduced from axioms by application of the syllogisms, then the formula below
the line is also a formal theorem. Usually, some finite set E of identities is given
as axiom schemata.

Equational logic can be combined with first-order logic. In this case, the
congruence rule is extended onto predicate symbols as well, and the applica-
tion rule is omitted. Syllogisms can be turned into axiom schemata having the

7



2 Equational Logic

form of implications to which Modus Ponens can be applied. Major results of
first-order logic hold in this extended theory.

Equational logic is complete, if algebra A is a model for E, i.e., all identities
from E hold in algebra A (cf. universal algebra) , then s ≈ t holds in A iff it can
be deduced in the equational logic defined by E. This theorem is sometimes
known as Birkhoff’s theorem [6].

Reflexivity
t ≈ t(ref) for all terms t

Symmetry
s ≈ t
t ≈ s(sym)

Transitivity
s ≈ t, t ≈ u
s ≈ u (trans)

Application
lσ ≈ rσ (app) for all l ≈ r ∈ E and sub-

stitutions σ

Congruence
s1 ≈ t1, . . . , sn ≈ tn

f(s1, . . . , sn) ≈ f(t1, . . . , tn)
(cong) for all n−ary function

symbols f

Table 2.3: Summary of inference rules

2.5 Equational Reasoning

Definition 2.14. An equation is a pair (s, t) of terms, written as s ≈ t.

Equations are interpreted by comparing the meaning of the two constituent
terms. Consider for instance the example algebras A and B defined in Sec-
tion 2.3 and the equation s(0) + s(0) ≈ s(s(0 + 0)). Both terms have the
same value 2 in A. We say the equation is valid in A. Then equation s(0) +
s(0) ≈ s(s(0 + 0)) is not valid in B because the values of the two terms
differ: [s(0) + s(0)]B = ⊖ and [s(s(0 + 0))]B = ⊗. To determine the validity
of equations involving non-ground terms, we have to take all possible values for
the variables into consideration.

Definition 2.15. An equation s ≈ t is valid in an algebra A, denoted by
A ⊧ s ≈ t or s =A t, if [α]A(s) = [α]A(t) for every assignment α ∈ AV . We
also say that A is a model of the equation s ≈ t.

The equation x+x ≈ x is not valid inA because [α]A(x+x) = 2 ≠ 1 = [α]A(x)
for any assignment α satisfying α(x) = 1. Because [β]B(x + x) = [β]B(x) for
every assignment β from V to {⊕,⊖,⊗,⊘}, the equation x+ x ≈ x is valid in B.

8



2.5 Equational Reasoning

Definition 2.16. An equational system (ES for short) is a pair (F ,E) consisting
of a signature F and a set E of equations between term in T (F ,E).

Both F and E may be infinite. An ES (F ,E) is said to be finite if
both F and E are finite. We often present an ES as a set of equations,
without making explicit its signature, assuming that the signature consists of
the function symbols occurring in the equations. In the next definition we give
semantics to ESs.

Definition 2.17. An algebra A is a model of an ES E , denoted by A ⊧ E , if
every equation in E is valid in A. The varietyMod(E) of an ES E in the class of
all algebras that are models of E . We write E ⊧ s ≈ t or simply s ≈E t if s ≈ t is
valid in all models of E .

Consider the ES E = {0+x ≈ x, s(x)+y ≈ s(x+y)}. The equation s(x)+y ≈
s(x+y) is valid in the example of algebraA since for all natural numbersm and n
we have (m + 1) + n = (m + n) + 1. Since the equation 0 + x ≈ x is also valid
in A(0 + n = n for all natural numbers n), A is a model of the ES E . The
equation s(x) + y ≈ s(x + y) is not valid in the example algebra B ∶ sB(⊕) +B
⊖ = ⊖ ≠ ⊗ = sB(⊕ +B ⊖). Hence B ∉Mod(E).

Definition 2.18. Let E be an ES. We write E ⊢ s ≈ t or simply s ≈E t if the
equation s ≈ t derivable from the inference rules of Table 2.3 .

The following proof tree shows that s(s(0)+s(0)) ≈E s(s(s(0))) with respect
to the example ES E above:

s(0) + s(0) ≈ s(0 + s(0)) (app) 0 + s(0) ≈ s(0) (app)

s(0 + s(0)) ≈ s(s(0)) (cong)

s(0) + s(0) ≈ s(s(0)) (trans)

s(s(0) + s(0)) ≈ s(s(s(0))) (cong)

It turns out that the equation s(s(0) + s(0)) ≈E s(s(s(0))) is valid in the
example algebras A and B ∶ [s(s(0) + s(0))]A = 3 = [s(s(s(0)))]A
and [s(s(0) + s(0))]B = ⊗ = [s(s(s(0)))]B. This is not a coincidence. Focus
on contribution of this thesis that equational reasoning is sound. This means
that every equation s ≈ t deducible from an ES E by equational reasoning is
valid in all models of E .

Theorem 2.19. Let E be an ES and s and t be terms. If s ≈E t then s ≈E t.

Proof. An easy induction on the structure of the proof tree of s ≈ t.

The final result of this section, which is known as the completness of equa-
tional reasoning, states that the reverse of the Theorem 2.19 also holds.

Corollary 2.20. Let E be an ES. The relations =E and ≈E coincide.

9



2 Equational Logic

((S.x).y).z ≈ (x.z).(y.z)

(K.x).y ≈ x

I.x ≈ x

Table 2.4: Combinatory logic.

Definition 2.21. The equational theory of an ES E is the set of all equations
s ≈ t such that s ≈E t. The validity problem for a given ES E is the question
whether an arbitrary equation s ≈ t belongs to the equational theory of E . If
we only consider equations s ≈ t between ground terms s and t then we speak
of the word problem for E .

Rephrased in syntactical terms, the validity problem for E is the question
whether the relation ≈E is computable and the word problem for E amounts
to the computability of the restriction of ≈E to ground terms. The word and
validity problem are undecidable in general. A concrete example of an ES
with undecidable word problem (and hence undecidable validity problem) is
combinatory logic, presented in Table 2.4 . The signature of combinatory
logic consists of the tree constants S, K, and I, and a binary function symbol
., called application. So there is no algorithm that decides, given two ground
term s and t, whether s and t can be proved equal using the equations of
the Table 2.4 .

10



3 Input-Format of the Proof

In order to transform a proof we need a given file which is written according to
the syntax below. A valid-input-format corresponds to the regular expression
as defined in the example below.

Example 3.1. : Regular expression of a valid input-format.

\d+;.+=.+;(cong\d+(,\d+)*|trans\d+,\d+|sym\d+|app\d+|ref|prem)

1. A line in the file has three parts and these parts are separated with semi-
colons e.g., part1; part2; part3

2. The first part expresses the index number of the line and is also used for
referencing earlier proof steps in the next lines.

3. The second part is the deduced equality and ends with semicolon.

4. Finally the third part is the applied rule and contains the number or num-
bers of the line(s) which we applied the rule to. And the most important
thing is here arguments are separated with a comma.

5. White-spaces in or between any of these parts will be ignored. Blank-lines
will be also ignored.

The following examples show well-formed input proofs.

11



3 Input-Format of the Proof

3.1 Valid Input-Format

Example 3.2. : An example for a valid input-format which doesn’t contain
any whites-spaces and blank-line.

1;b=a;prem

2;c=b;prem

3;c=d;prem

4;d=x;prem

5;x=y;prem

6;y=f;prem

7;a=b;sym1

8;b=c;sym2

9;a=c;trans7,8

10;a=d;trans9,3

11;x=f;trans5,6

12;d=f;trans4,11

13;g(a,d)=g(d,f);cong10,12

14;g(d,f)=g(a,d);sym13

15;h(g(d,f))=h(g(a,d));cong14

Example 3.3. : Another example for a valid input-format is the example below
which contains white-spaces and blank-line. This example of the proof contains
white-spaces and blank-line while the other Example 3.2 doesn’t contains.

1; a = b;prem

2; b = c;prem

3; c = d; prem

4; d= e;prem

5; e= f;prem

6; f= g;prem

8; h(a,b,c,d,e,f) = h(b,c,d,e,f,g);cong 1,2 , 3, 4,5,6

12



3.2 Invalid Input-Format

3.2 Invalid Input-Format

The program automatically discovers the syntax issues where you type wrong
or forget to type the line-number, the semicolons, the symbol equality, the ab-
breviations of the rules, the arguments of the rules, and the comma(s) between
the arguments. Recall the regular expression which we defined in Example 3.1.
We can read the valid-input-format of a proof by that example.

Example 3.4. : An example for invalid input-format is the example below. In
this case we have a file whose content contains the wrong typesetting.

1 a = b;prem

2 ; c = d; premise

3; b = c prem

4 ; f(b) = f(c); cong

5; a c ; trans1,3

; c = a; 5

7; f(a)=f(c);

8; f(c)=f(a); sym

9; f(b)=f(a); trans48

10; f(a)=f(b);sym 9

A correct line begins with a number followed by a semicolon and then some
character followed by the equality symbol and again some character followed
by a semicolon then the abbreviation of the rules. If the rule is a rule which can
have a number or numbers as its arguments, these have also to write after the
abbreviation of these rules. In case more than one argument they are separated
with a comma.

The first line “1a = b;prem” . Here we forgot to write the first semicolon.
After correction has the structure as “1;a = b;prem” .

The second line “2; c = d;premise” . Here we didn’t write the abbreviation of
the rule premise. This looks after correction as “2; c = d;prem” .
So one can see the whole corrected-format on the right-hand-side in the table
below. The corrected character or characters are displayed in the color of
darkblue.
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3 Input-Format of the Proof

Line Wrong-format Corrected-format

1 1a=b;prem 1;a=b;prem

2 2;c=d;premise 2;c=d;prem

3 3;b=cprem 3;b=c;prem

4 4;f(b)=f(c);cong 4;f(b)=f(c);cong3

5 5;ac;trans1,3 5;a=c;trans1,3

6 ;c=a;5 6;c=a;sym5

7 7;f(a)=f(c); 7;f(a)=f(c);cong 5

8 8;f(c)=f(a);sym 8;f(c)=f(a);sym 7

9 9;f(b)=f(a);trans48 9;f(b)=f(a);trans4,8

Table 3.1: The corrected input-format

14



4 Proof Tree

Proofs in tree-view use the package proof.sty [8]. The proof-tree may have
many nodes and these nodes may have again many others nodes as its children.
If a node has only a child then we call it as unary-node, with two children
binary-node and with n−children n-ary node. If a node has no child then it
is a leaf expect the application rule.

The child corresponds to the argument of the rule. A node with one child
means a rule with one argument, a node with two children means a rule with
two arguments, and a node with n-children means a rule with n-arguments e.g.,
”sym 1” means both a node with one child/argument and a unary-node and
”cong 1,2,3” means both a node with tree children/arguments and a ternary-
node. The rules reflexivity, premise are leaf, application is also a leaf although
it has a child.

Next we describe an algorithm which transforms proofs in the format from
Chapter 3 into proofs with respect to proof.sty.

4.1 Algorithm

The algorithm of proving in tree-view took most of time of this thesis. At first I
implemented the program according to the first algorithm as in the next section.
But in this algorithm we had the restriction that the congruence rule may have
at most two arguments. Then I improved the first algorithm in Section 4.1.1
so that the congruence rule may have many argument.

4.1.1 The first Algorithm: The rule congruence has at most 2
arguments

The congruence rule causes that a node may be a ternary-node or n-ary node.
In this algorithm we have the restriction such that the rule congruence can have
nodes which are a unary-node and binary-node.

We distinguish between two trees. The first one is the basic tree which
has only a unary-node while the other one is the complex tree which may
have any n-ary-node but in the first algorithm binary-node and in the second
algorithm to the 9-ary-node.

• The basic tree: A tree whose nodes have only one child/ unary-node.

• The complex tree: A tree whose nodes may have many children i.e.,
unary-nodes, binary-nodes.

15



4 Proof Tree

Abbreviations: unary-node: u-node, binary-node: b-node, ternary-node:
t-node, n-ary-node: n-node.

Binary-node

b-node

* *

: Every binary-node corresponds either to the rule of
transitivity or congruence with two arguments.

Unary-node

u-node

*

: Every unary-node corresponds one of to the rules symme-
try or congruence with only one argument. Reflexivity, premise and application
are leafs. Application is a leaf although it has a child.
Any arbitrary node of the complex tree has four cases below that we distinguish.

b-node

u-node

*

u-node

*

Figure 4.1: The children of a binary-
node are unary-nodes

b-node

u-node

*

b-node

* *

Figure 4.2: The right hand-side of the
b-node is a b-node while
the left hand-side is a u-
node

b-node

b-node

* *

u-node

*

Figure 4.3: The left hand-side of a b-
node is a b-node while the
right hand-side is a u-node

b-node

b-node

* *

b-node

* *

Figure 4.4: The both children are b-
node
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4.1 Algorithm

15;cong

14;sym

13;cong

10;trans

9;trans

7;sym

1;app

8;sym

2;app

3;app

12;trans

4;app 11;trans

5;app 6;app

Figure 4.5: A tree with respect to the package proof.sty

The tree in the Figure 4.5 is the tree of the Example 3.2 . In the tree we clearly
see the behaviours of the rules. In every node you can see the proof-line-number
and the name of the rule, e.g., 15;cong means the line 15 and the applied rule
congruence.

The basic tree: a tree whose nodes have only a child.
There is no binary-node in the basic tree. The lines in the given (see Figure 4.6)
proof have the same color in the tree (see Figure 4.7) . Thus we can imagine
the tree structure of this proof.

The first step is reading of the given file. After reading the file we add
the whole content of the given file in a list. Then we check if the given file
corresponds to the basic tree or to the complex tree. If it were a the basic tree,
it is very easy to transform it. We begin here to transform from the last line
backwards, and it is displayed as in the Figure 4.8 .
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4 Proof Tree

Example 4.1. : Given were a proof below in Figure 4.6 which only contains unary-
nodes.

1; b = a;prem

2;a = b; sym1

3; f(a) = f(b); cong2

Figure 4.6: Given proof

3;cong3

2;sym1

1;prem

Figure 4.7: Given proof’s tree

b ≈ a (app)
a ≈ b (sym)

f(a) ≈ f(b) (cong)

Figure 4.8: Proof’s tree-view

The complex tree: a tree whose nodes may have many children i.e., binary-
node, ternary-node till 9−ary-node. 9−ary-node means a node with 9 children.

First we read the given proof file (see Section Valid-Input-Format Example
3.2) and add its content in a list. Then we check if the given file corresponds
to the complex tree. If this were the case, we filter all binary-nodes in the list
which we already added the content of the given file in. After filtering we add
the filtered nodes in another list (see Figure 4.9) . And this list contains only
binary-nodes.

1. We take the first binary-node i.e., 9;a = c; trans7,8 (see Figure 4.11) in
the list and transform it with its left child and continuing the right child.
The first binary-node doesn’t contain any binary-node in its block (see
Figure 4.11) and (see Figure 4.13) . We start transforming with it left
child after finishing with the left child continuing with the right child. So
we are done with this binary−node and add the transformed TEX code.
in its map. Its map has as key its line-number and as content the its TEX
code.
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4.1 Algorithm

2. The next binary-node is 10;a = d; trans9,3 (see Figure 4.12) . We start
with the left child and meet the binary-node and stop transforming steps.
Because its child is a binary-node and must have been already transformed
before. And we add the TEX code its child i.e., its binary-node in the ac-
tual map and we are don with left child. Now we transform the right child
which is in this are the unary-node application(app). So by doing this
we are done with this actual binary-node. i.e., 10;a=d;trans9,3 .

3. The next is 11;x = f ; trans5,6 (see Figure 4.13) , this step is like the first
step.

4. The next is 12;d = f ; trans4,11 (see Figure 4.14) , this step is like the
second step.

5. And finally 13; f(a, d) = f(d, f); cong10,12 (see Figure 4.10) , the last binary-
node. This forth case its both children are binary-node. Hence we only
add the TEX code of its children in its map. This is our root-binary-node.
And this binary-node has all information i.e., TEX code of all nodes in its
block.

6. We are still not done. This root-binary-node is not the last one in the list
hence we start from the last one in the list and transform till this node.
And their TEX code are the completed code of the given proof. Now we
are done.

9;a= c; trans7,8
10;a= d; trans9,3

11;x= f ; trans5,6

12;d= f ; trans4,11

13; g(a, d)= g(d, f); cong10,12

Figure 4.9: After filtering to binary-node

Above we have the filtered proof, it only contains the rule transitivity and
congruence with two arguments.
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4 Proof Tree

13;cong

10;trans

9;trans

sym

app

sym

app

app

12;trans

app 11;trans

app app

Figure 4.10: The filtered proof’s tree
Above we have the filtered proof’s tree. It corresponds also to the case (see
Figure 4.4)

9;trans

sym

app

sym

app

Figure 4.11: The childen of binary-
node are unary-node

10;trans

9;trans

sym

app

sym

app

app

Figure 4.12: The left child
of binary-node is
again a binary-node
while the right one
is unary-node
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4.1 Algorithm

11;trans

app app

Figure 4.13: The childen of binary-
node are unary-node

12;trans

app 11;trans

app app

Figure 4.14: The right child is
a binary-node while
the left one is a unary-
node

However, this algorithm is not default in the implementation because its restric-
tion to at most two children, hence it was disabled in the file TreeView.java.
If you want to use this algorithm you have to set the variable switchAlgorithm
on false. For changing to default algorithm set the variable switchAlgorithm on
true.

4.1.2 The second Algorithm: The rule congruence may have at
most 9 arguments

This algorithm is based largely on the algorithm which we mentioned before.
The second algorithm has not the four cases (see page 16) which cause that the
rule congruence may not have more than two arguments. Instead of the four
cases we have here a loop which repeats the number of the arguments of the
rule congruence. The unary-nodes of the n−ary-node are added iteratively in
the loop. The n−ary-node and unary-node have the same meaning as before.
The basic tree is the same and the complex tree is the same but it can contain
here till 9 children i.e., 9 − ary-node.

Here we filter all nodes from binary-node till 9 − ary-node.
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4 Proof Tree

cong

* * cong

trans

prem prem

sym

cong

* * * * * * *

app

* cong

app

* cong

app sym

app

app

* *

Figure 4.15: The tree structure of a proof which contains a 9 − ary-node

The structure of a proof in tree-view is like a tree above. The tree above has
a node which we call as a 9 − ary-node. The 9 − ary-node is the root-node of
the tree. And this 9 − ary-node may have any node like unary-node, binary-
node, ternary-node, . . . , 8−ary-node or again a 9−ary-node. This root node
contains all information i.e., source-codes.

However, this algorithm is the default in the implementation. If you want
to change the other algorithm, you have to set the variable switchAlgorithm
on false in the file TreeView.java. For resetting you have to set the variable
switchAlgorithm on true.

Details of the implementation:
In tree-view we have the restriction that the rule congruence (see congruence
2.4.5) doesn’t have more than nine arguments because if we select “\tiny” for
font size and the both sides of the equality have only a character which is
minimum still fits an A4-sized page (see Figure 4.19) . Hence the arguments of
the congruence are limited to nine.

Example 4.2. : We recall the example on the left-hand-side which we men-
tioned before as Example 3.2 let’s draws its tree (see Figure 4.16) and show
how it looks in tree-view (see Figure 4.17) .
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4.1 Algorithm

1; b = a;prem

2; c = b;prem
3; c = d;prem

4;d = x;prem

5;x = y;prem

6; y = f ;prem

7;a = b; sym1

8; b = c; sym2

9;a= c; trans7,8
10;a= d; trans9,3

11;x= f ; trans5,6

12;d= f ; trans4,11

13; g(a, d)= g(d, f); cong10,12

14; g(d, f) = g(a, d); sym13

15;h(g(d, f)) = h(g(a, d)); cong14

In this example we have the given
proof above. The binary-nodes are
colored in different colors. Hence the
uncolored nodes are unary-nodes. On
the right-hand-side we have proof’s
tree structure.

cong

sym

13;cong

10;trans

9;trans

sym

app

sym

app

app

12;trans

app 11;trans

app app

Figure 4.16: The tree of the Example
4.2

Here is the drawn tree of the proof
on the left-hand-side. The same color
corresponds to the same proof-line
in the proof i.e., 13;cong expresses
13;g(a,d)=g(d,f);cong10,12

b ≈ a (app)
a ≈ b (sym) c ≈ b (app)

b ≈ c (sym)
a ≈ c (trans) c ≈ d (app)

a ≈ d (trans) d ≈ x (app) x ≈ y (app) y ≈ f (app)

x ≈ f (trans)

d ≈ f (trans)

g(a, d) ≈ g(d, f) (cong)

g(d, f) ≈ g(a, d) (sym)

h(g(d, f)) ≈ h(g(a, d)) (cong)

Figure 4.17: Tree-view of the given Example 4.2
And above in the Figure 4.17 we see the tree-view of the given file above in

Example 4.2 .
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4 Proof Tree

Example 4.3. : Let’s see another example from the lecture script of Term
Rewriting by Prof. Aart Middeldorp [5]. Below we see the proof and in the
Figure 4.18 how it displays in tree-view.

1; s(x) + s(y) = s(x + s(y));prem
2; 0 + s(y) = s(y);prem
3; s(0) + s(0) = s(0 + s(0));app1
4; 0 + s(0) = s(0);app2
5; s(0 + s(0)) = s(s(0)); cong4

6; s(0) + s(0) = s(s(0)); trans3,5
7; s(s(0) + s(0)) = s(s(s(0))); cong6

Above we have the given proof, and below its tree-view with respect to the
package proof.sty.

s(0) + s(0) ≈ s(0 + s(0)) (app) 0 + s(0) ≈ s(0) (app)

s(0 + s(0)) ≈ s(s(0)) (cong)

s(0) + s(0) ≈ s(s(0)) (trans)

s(s(0) + s(0)) ≈ s(s(s(0))) (cong)

Figure 4.18: Tree-view of the given Example 4.3

Example 4.4. : An example for our boundary value, the rule congruence has
9 arguments, and we select “\tiny” for font-size and every term consisting of
only a character, so it fits the page.

1;a = b;prem
2; b = c;prem
3; c = d;prem

4;d = e;prem
5; e = f ;prem

6; f = g;prem

7; g = h;prem

8;h = i;prem
9; i = j;prem
10; s(a, b, c, d, e, f, g, h, i) = s(b, c, d, e, f, g, h, i, j); cong1,2,3,4,5,6,7,8,9

Above we have the given proof, and below its tree-view in Figure 4.19 with
respect to the package proof.sty.
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4.2 Implementation

a ≈ b
(app)

b ≈ c
(app)

c ≈ d
(app)

d ≈ e
(app)

e ≈ f
(app)

f ≈ g
(app)

g ≈ h
(app)

h ≈ i
(app)

i ≈ j
(app)

s(a, b, c, d, e, f, g,h, i) ≈ s(b, c, d, e, f, g,h, i, j) (cong)

Figure 4.19: Tree-view of the given Example 4.4

Properties of my algorithm

• The algorithm based on the strategy divide and conquer. I divide the tree
in n − ary-node where n is in the range [2 − 9]. And then I conquer
these filtered nodes.

• The algorithm works top-to-bottom. It is to transform the nodes in the
top of the tree so by the way their parent-nodes already transformed if
the parent-node has these two n-ary nodes as its children.

• The complexity is linear.

• It is to transform at most one node once or no one.

4.2 Implementation

The package which I chose for tree-view is proof.sty [8] written by Prof. Makoto
Tatsuta, National Institute of Informatics from Japan.1

The strategy which is used here is bottom-to-top which means we begin with
the last line of given proof and solve it until we reach a leaf.
The other strategy which I tried before was top-to-bottom strategy uses the
package bussproofs.sty [2] written by Prof. Samuel R. Buss.2 The reason why
I changed to the package proof.sty from bussproofs.sty is that the package
bussproofs.sty only supports nodes till ternary-node while proof.sty supports n−
ary-node. Next we describe the commands (in proof.sty) that allow to typeset
proof trees.

1. \infer takes as argument the name of the rule and displays it.

2. \approx corresponds to the equality and is written instead of the = in the
proof

3. The curly brackets { and } are used for determining the scopes.

4. The & is used for concatenation of the equalities by the rules transitivity
and congruence with two or more arguments.

5. The double $$ sign for beginning and ending the proof.

1http://research.nii.ac.jp/~tatsuta/index-e.html
2http://www.math.ucsd.edu/~sbuss/ResearchWeb/bussproofs/index.html
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4 Proof Tree

Example 4.5. : Given the proof in Example 4.2 . Below we see its TEX code
with respect to the package proof.sty. We can see how it displays in tree-view
in Figure 4.17 .

1 $$
2 \infer[(cong)]{h(g(d,f )) \approx h(g(a,d))}
3 {
4 \infer[(sym)]{g(d,f) \approx g(a,d)}{
5 \infer[(cong)]{g(a,d) \approx g(d,f)}{
6 \infer[(trans)]{a \approx d}{
7 \infer[(trans)]{a \approx c}{
8 \infer[(sym)]{a \approx b}{
9 \infer[(app)]{b \approx a}{}}

10 &
11 \infer[(sym)]{b \approx c}{
12 \infer[(app)]{c \approx b}{}}}
13 &
14 \infer[(app)]{c \approx d}{}}
15 &
16 \infer[(trans)]{d \approx f}{
17 \infer[(app)]{d \approx x}{}
18 &
19 \infer[(trans)]{x \approx f}{
20 \infer[(app)]{x \approx y}{}
21 &
22 \infer[(app)]{y \approx f}{}}}}}
23 }
24 $$

Example 4.6. Given the proof in Example 4.4 . Below we see its TEX code
with respect to the package proof.sty. We can see how it displays in tree-view
in Figure 4.19 .

1 $$
2 \infer[(cong)]{s(a,b,c,d,e, f ,g,h, i)\approx s(b,c,d,e,f ,g,h, i , j)}
3 {
4 \infer[(app)]{ a\approx b}{} &
5 \infer[(app)]{b\approx c}{} &
6 \infer[(app)]{ c\approx d}{} &
7 \infer[(app)]{d\approx e}{} &
8 \infer[(app)]{e\approx f}{} &
9 \infer[(app)]{ f\approx g}{} &

10 \infer[(app)]{g\approx h}{} &
11 \infer[(app)]{h\approx i}{} &
12 \infer[(app)]{ i\approx j}{}
13 }
14 $$
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4.2 Implementation

Example 4.7. : Given the proof in Example 4.3 . Below we see its TEX code
with respect to the package proof.sty. We can see how it displays in tree-view
in Figure 4.18 .

1 $$
2 \infer[(cong)]{ s(s(0)+s(0)) \approx s(s(s(0)))}
3 {
4 \infer[(trans)]{ s(0)+s(0) \approx s(s(0))}{
5 \infer[(app)]{ s(0)+s(0) \approx s(0+s(0))}{}
6 &
7 \infer[(cong)]{ s(0+s(0)) \approx s(s(0))}{
8 \infer[(app)]{ 0+s(0) \approx s(0)}{}}}
9 }

10 $$

4.2.1 Implementation using Java

1. Create an ArrayList <String >listIn = new ArrayList<String >(); The
first step is adding the given proof (see Example 3.2) from the given file
into an ArrayList. If the given proof would contain an invalid input-format
then an error message displayed. In other case we add the given proof in
listIn. But before adding the the first line I add a new blank line into

Arraylist in order to get to first line with an equation e.g., listIn.add(0)
is a ”\n” and listIn.get(1) is an equation which is the starting line of the
given proof file.

2. If the given proof doesn’t contain a congruence rule with more than nine
arguments then tree = new TreeView(listIn);, in other case error message
is displayed.

3. After calling the constructor of the class TreeView, we convert the given
proof line by line in TEX code and save it in the list in class TreeTex
tex.infer(listIn);. The method infer(ArrayList < String > In) in TreeTex
is responsible for transforming line by line in TEX code.

4. The basic tree: please read (page 17) .

5. The complex tree: please read (page 18) .

6. After these steps the given proof is transformed in TEX code.
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5 Natural Deduction

How do we go about constructing a calculus for reasoning about propositions,
so that we can establish the validity of Example 5.1 . Clearly, we would like to
have a set of rules each of which allows us to draw a conclusion given a certain
arrangement of premises. In natural deduction, we have such a collection of
proof rules (see Section 5.2) . They allow us to infer formulas from other for-
mulas. By applying these rules in succession, we may infer a conclusion from a
set of premises. Let’s see how this works.

Suppose we have a set of formulas φ1, φ2, φ3, . . . , φn, which we will call
premises, and another formula, ψ which we will call a conclusion. By apply-
ing proof rules to the premises, we hope to get some more formulas, and by
applying more proof rules to those, to eventually obtain the conclusion. This
intention we denote by φ1,φ2,φ3,. . . ,φn ⊢ ψ.

This expression is called a sequent; it is valid if a proof for it can be found.

Example 5.1. :

a ≈ b, b ≈ c ⊢ a ≈c

Constructing such a proof is a creative exercise, a bit like programming. It is
not necessarily obvious which rules to apply, and in what order, to obtain the
desired conclusion. Additionally, our proof rules should be carefully chosen;
otherwise, we might be able to prove invalid patterns of argumentation [3].
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5.1 Deduction Systems

5.1 Deduction Systems

In order to define the logics and proof theories we are interested in, we shortly
present the notion of deduction systems that will be intensively used.

Definition 5.2. A Deduction system is a 4-tuple (∑,Φ,A,R) where:

• ∑ is a countable alphabet,

• Φ is a set of formulas φ0, φ1, . . . that is a decidable language over ∑,

• A is a set of axioms a0, a1, . . . that is a decidable subset of Φ,

• R is a finite set of inference rules r0, r1, . . . , rn that are computable
predicates over Φ.

Infinite sets of axioms are allowed and specified by axiom schemes. An infer-
ence rule is written as:

Name φ0, . . . , φn−1 ⊢ φn
if condition

and means:

“Given φ0, . . . , φn−1 deduce φn if condition holds. ”

A derivation d of the conclusion c ∈ Φ from the premises P = {p0, . . . , pn−1} ⊆
Φ is a finite non-empty sequence (d0, . . . , dm) such that di ∈ Φ, dm = c and
either di, ∈ A(di is an axiom), or di ∈ P (di is a premise), or di has been
obtained by applying some inference rule in R to a set dj , . . . , dk of formulas
such that dj , . . . , dk ∈ d and j, . . . , k < i. This is written as:

p0, . . . , pn−1 ⊢ c.
A theorem th is a derivation from the empty set of premises, written:

⊢ th.
A derivation of a theorem is called a proof. For a deduction system, the

set of all proofs is decidable. If the set of all theorems is decidable, the
deduction system is called decidable. If the set of all theorems is undecid-
able but semi-decidable, the deduction system is said semi − decidable. If the
set of all theorems is not even semi-decidable, the deduction system is said
undecidable. An algorithm that computes a decidable set of theorems is called
a decision precedure for the deduction system [4].
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5 Natural Deduction

5.2 Rules for Natural Deduction

As rules are used the rules which we mentioned before (see Chapter 2.4.6) and
additionally the rule premise.

5.2.1 Premise

Premise allows us to conclude the premise itself, we conclude the theory below
the inference-line by the theory above the line.

The rule premise
s ≈ t
s ≈ t (prem)

for all terms s and t.

5.3 Algorithm

The algorithm of proving in so called linear-view is here to transform the lines in
a given file line by line i.e., every line is transformed in its TEX code immediately.

5.4 Implementation

For implementing the given proof in linear-view we used here the package box-
proof.sty [7] which is written by Christian Sternagel from the University of
Innsbruck.

And next we describe the commands (in boxproof.sty) that allow to typeset
proof linear-view:

1. Every proof begins with \begin{boxproof} and ends with \end{boxproof}.

2. Every proof-line is identified with \pline followed by its number of refer-
ence line.

3. The name of the rule is written by \text .

4. The proof-line-reference is indicated by \pref .
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5.4 Implementation

Example 5.3. : Given were the proof in Example 4.2 . Below we see its TEX
code with respect to the package boxproof.sty .

1 \begin{boxproof}
2 \pline[1]{b \approx a}{\text{prem}}
3 \pline[2]{c \approx b}{\text{prem}}
4 \pline[3]{c \approx d}{\text{prem}}
5 \pline[4]{d \approx x}{\text{prem}}
6 \pline[5]{x \approx y}{\text{prem}}
7 \pline[6]{y \approx f}{\text{prem}}
8 \pline[7]{a \approx b}{\text{sym \pref{1}}}
9 \pline[8]{b \approx c}{\text{sym \pref{2}}}

10 \pline[9]{a \approx c}{\text{{trans} \pref{7}, \pref{8}}}
11 \pline[10]{a \approx d}{\text{{trans} \pref{9}, \pref{3}}}
12 \pline[11]{x \approx f}{\text{{trans} \pref{5}, \pref{6}}}
13 \pline[12]{d \approx f}{\text{{trans} \pref{4}, \pref{11}}}
14 \pline[13]{g(a,d) \approx g(d,f)}{\text{{cong} \pref{10}, \pref{12}}}
15 \pline[14]{g(d,f) \approx g(a,d)}{\text{sym \pref{13}}}
16 \pline[15]{h(g(d,f )) \approx h(g(a,d))}{\text{{cong} \pref{14}}}
17 \end{boxproof}

Example 5.4. : Here we see the displayed-view of the TEX code corresponding
to the Example 5.3 .

1 b ≈ a prem
2 c ≈ b prem
3 c ≈ d prem
4 d ≈ x prem
5 x ≈ y prem
6 y ≈ f prem
7 a ≈ b sym 1
8 b ≈ c sym 2
9 a ≈ c trans 7, 8

10 a ≈ d trans 9, 3
11 x ≈ f trans 5, 6
12 d ≈ f trans 4, 11
13 g(a, d) ≈ g(d, f) cong 10, 12
14 g(d, f) ≈ g(a, d) sym 13
15 h(g(d, f)) ≈ h(g(a, d)) cong 14
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5 Natural Deduction

Example 5.5. : Let’s see another example from the lecture script of Term
Rewriting by Prof. Aart Middeldorp [5]. We use here the structure according
to keywords (read on page 2) .

1; s(x) + s(y) = s(x + s(y));prem
2; 0 + s(y) = s(y);prem
3; s(0) + s(0) = s(0 + s(0));app1
4; 0 + s(0) = s(0);app2
5; s(0 + s(0)) = s(s(0)); cong4

6; s(0) + s(0) = s(s(0)); trans3,5
7; s(s(0) + s(0)) = s(s(s(0))); cong6

Figure 5.1: Input: proof.txt

Given is the proof.txt file above which we transform in TEX code as below
Figure 5.2 .

1 \begin{boxproof}
2 \pline[1]{s(x)+s(y) \approx s(x+s(y))}{\text{prem}}
3 \pline[2]{0+s(y) \approx s(y)}{\text{prem}}
4 \pline[3]{s(0)+s(0) \approx s(0+s(0))}{\text{app \pref{1}}}
5 \pline[4]{0+s(0) \approx s(0)}{\text{app \pref{2}}}
6 \pline[5]{s(0+s(0)) \approx s(s(0))}{\text{{cong} \pref{4}}}
7 \pline[6]{s(0)+s(0) \approx s(s(0))}{\text{{trans} \pref{3}, \pref{5}}}
8 \pline[7]{s(s(0)+s(0)) \approx s(s(s(0)))}{\text{{cong} \pref{6}}}
9 \end{boxproof}

Figure 5.2: TEX-output: proof linear.tex

The given file in Figure 5.1 is transformed with respect to the package box-
proof.sty.

1 s(x) + s(y) ≈ s(x + s(y)) prem
2 0 + s(y) ≈ s(y) prem
3 s(0) + s(0) ≈ s(0 + s(0)) app 1
4 0 + s(0) ≈ s(0) app 2
5 s(0 + s(0)) ≈ s(s(0)) cong 4
6 s(0) + s(0) ≈ s(s(0)) trans 3, 5
7 s(s(0) + s(0)) ≈ s(s(s(0))) cong 6

Figure 5.3: Pdf-output: proof linear.pdf

The transformed file in Figure 5.2 file is displayed as above.
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5.4 Implementation

5.4.1 Implementation using Java

The content of the given file is read via Scanner and added in an arraylist which
is listIn. Then the method linearview(listIn) is called.

The needed TEX code is added here and this method calls an other method
which is pline(line), for transforming the lines in TEX according to the package
boxproof.sty. And the method pline(line) takes every line as an argument and
transforms it.
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6 How to Use It

6.1 User Manual

Firstly we need a file for transforming. The input-format is described in Chap-
ter 3. Go to the folder where the class LinearView.java is. And then compile it
with “javac LinearTree.java” . After it is compiled for transforming execute:
“java LinearTree [filename] [linear ∣ tree ∣ lineartree ∣ treelinear]”
E.g., “java LinearTree proof tree” .

Now the proof in the file has been transformed and written into proof tree.tex.
For simplicity you can type e.g., “lineartree” or “treelinear” for transforming
in both views and the TEX files proof linear.tex and proof tree.tex are created.

6.2 Test Cases

Lets have a look the cases after compiling the program with “javac LinearTree.java” .
We have the cases with error messages and with success.

6.2.1 Test Cases with Error Messages

1. java LinearTree

**************************************************************

**** No argument entered! Type like: *************************

java LinearTree [filename] [linear|tree|lineartree|treelinear]

**************************************************************

2. java LinearTree nofile

**************************************************************

File not found! Please write the name of the file correctly!

**************************************************************
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6.2 Test Cases

3. java LinearTree proof.txt

**************************************************************

**** Second argument not entered! Type like: *****************

java LinearTree [filename] [linear|tree|lineartree|treelinear]

**************************************************************

4. java LinearTree proof.txt invalidargument

**************************************************************

** Wrong tex format! Type: [linear|tree|lineartree|treelinear]

**************************************************************

5. In this case we have a file whose content contains the wrong typesetting.
But the program detects the wrong line in this file.

1 a = b;prem

2 ; c = d; premise

3; b = c prem

4 ; f(b) = f(c); cong

5; a c ; trans1,3

; c = a; 5

7; f(a)=f(c);

8; f(c)=f(a); sym

9; f(b)=f(a); trans48

10; f(a)=f(b);sym 9

We enter the following command line in terminal. “java LinearTree proof.txt
tree” . And then the error message is displayed.
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6 How to Use It

**************************************************************

**** The line/lines is/are below wrong! **********************

**************************************************************

**** A valid format has the structure ************************

\d+;.+=.+;cong\d+(,\d+)*|trans\d+,\d+|sym\d+|app\d+|ref|prem

White-spaces and blank-line don’t cause error! They are allowed!

**************************************************************

1a=b;prem

2;c=d;premise

3;b=cprem

4;f(b)=f(c);cong

5;ac;trans1,3

;c=a;5

7;f(a)=f(c);

8;f(c)=f(a);sym

9;f(b)=f(a);trans48

Above we see the wrong lines. For explanation of the correct-format
please (see Table 3.1) .

6. In tree-view at most nine arguments are allowed. Given were the proof
file in Figure 6.1. Type the line below in a terminal, than you get the
error message as follows.
”java LinearTree proof.txt tree”

1; a = b;prem

2; b = c;prem

3; c = d;prem

4; d= e;prem

5; e= f;prem

6; f= g;prem

7; g=h;prem

8; h=i;prem

9; i=j;prem

10; j=k;prem

11; s(a,b,c,d,e,f,g,h,i,j) = s(b,c,d,e,f,g,h,i,j,k);cong1,2,3,4,5,6,7,8,9,10

Figure 6.1: proof.txt

**************************************************************

**************************************************************

**** Cong has more than 9 arguments **************************

**** Not allowed in treeview but in linearview ***************

**** No file created! ***************

**************************************************************
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6.2 Test Cases

If we enter “java LinearTree proof.txt treelinear” or “java LinearTree
proof.txt lineartree” we get the error message below.

**************************************************************

**************************************************************

**** Cong has more than 9 arguments **************************

**** Not allowed in treeview but in linearview ***************

**** proof_linear.tex is created! ***************

**************************************************************

6.2.2 Test Cases with Success

After reading Chapter 3 you create a file such as given below with file-name
“proof” .

Given

1;a = b;prem
2; b = c;prem
3;a = c; trans1,2

Figure 6.2: proof
After creating this file:

1. If you want to transform in linear-view you type like: “javac LinearTree.java”
and continue with “java LinearTree proof linear” then the file proof linear.tex
Figure 6.3 is created and finally you can convert the transformed TEX file
into PDF with “pdflatex proof linear.tex” Figure 6.4 .

Transformed

1 \begin{boxproof}
2 \pline[1]{a \approx b}{\text{prem}}
3 \pline[2]{b \approx c}{\text{prem}}
4 \pline[3]{a \approx c}{\text{{trans}
5 \pref{1}, \pref{2}}}
6 \end{boxproof}

Figure 6.3: proof linear.tex

Displayed
1 a ≈ b prem
2 b ≈ c prem
3 a ≈ c trans 1, 2

Figure 6.4: proof linear.pdf
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6 How to Use It

2. If you want to transform in tree-view you type like: “javac LinearTree.java”
and continue with “java LinearTree proof tree” then the file proof tree.tex
Figure 6.5 is created and finally you can convert the transformed TEX

file into PDF using the command “pdflatex proof tree.tex” Figure 6.6 .

Transformed

1 $$
2 \infer[(trans)]{a \approx c}{
3 \infer[(app)]{a \approx b}{}
4 \infer[(app)]{b \approx c}{}}
5 $$

Figure 6.5: proof tree.tex

Displayed

a ≈ b (app)
b ≈ c (app)

a ≈ c (trans)

Figure 6.6: proof tree.pdf
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7 Conclusion

We have recalled the proof rules of equational logic and have discussed two
ways of displaying proofs.

One is a tree-like representation while the other one adheres to a linear-shape.

Using the implemented program we are able to transform the given proof
in plain text format in different styles such as linear-view and tree-view. The
packages for proving in linear-view and tree-view are not restricted with box-
proof.sty and proof.sty. There are also many other packages which you can use.

To conclude we stress the situation before and after this thesis:

1. before this project the lecturer had to write separately the equational
logic poof depending on the used packages for linear-view and tree-view

2. after this project the lecturer need not care for writing in TEX. He typesets
proofs in an easy text format and use the program for transforming into
different LATEX formats

As future work that could have here part of this project, we mention the
possibility of a proof checker, i.e., an automated program that verifies each step
in an equational logic proof.

We note that proof generation, i.e., finding an equational logic proof is un-
decidable [1].
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